АДЕНОЗИНТРИФОСФАТТЫН ДАРАЖАСЫНА ЖАРАША ЖҮРӨК ЖЕТИШСИЗДИГИ МЕНЕН АЙКАЛЫШКАН 2-ТИПТЕГИ КАНТ ДИАБЕТИ МЕНЕН ООРУГАН БЕЙТАПТАРДЫ ДАРЫЛООНУН НАТЫЙЖАЛУУЛУГУНА ЭМПАГЛИФЛОЗИНДИН ТИЙГИЗГЕН ТААСИРИ (АДАБИЯТТАРГА СЕРЕП)

DOI:

https://doi.org/10.54890/.v2i2.1330

Аннотация

Кант диабети менен ооругандардын санынын прогрессивдүү өсүшү менен бирге, кандагы глюказанын деңгээлин катуу көзөмөлдөгөн адамдардын саны төмөн бойдон калууда, демек, жүрөк-кан тамыр оорулары, анын ичинде жүрөк жетишсиздигинин өнүгүү тобокелдиктери кыйла жогору. Глюкозанын деңгээлин жана жүрөк жетишсиздигинин тобокелдигин төмөндөтүү боюнча жаңы технологиялардын ичинен 2-типтеги натрий-глюкоза
котранспорттору ингибиторлорунун ичинен эмпаглифлозин препараты изилденген, ал кетон денелеринин кычкылдануусунан аденозин трифосфаттын пайда болушун жакшыртуу аркылуу жаңы молекулярдык максаттарга багытталган, ошону менен жүрөк натыйжалуулугу жогорулаган. Бул макалада биз эмпаглифлозиндин аденозинтрифосфаттын деңгээлине жараша жүрөк жетишсиздиги менен бирге 2-типтеги кант диабети менен ооруган бейтаптарды дарылоонун натыйжалуулугуна таасирин талдоо үчүн болгон илимий негизделген адабияттарды карап чыктык.

Ключові слова:

2-типтеги кант диабети, жүрөк жетишсиздиги, натрий-глюкоза котранспорттору-2 ингибиторлору, эмпаглифлозин, аденозинтрифосфат.

Біографії авторів

М.С. Молдобаева, И.К. Ахунбаев атындагы Кыргыз мамлекеттик медициналык академиясы

Ички оорулар пропедевтикасы менен эндокринология жана профпатология курстары кафедрасы

У.К. Омурзакова , И.К. Ахунбаев атындагы Кыргыз мамлекеттик медициналык академиясы

Ички оорулар пропедевтикасы менен эндокринология жана профпатология курстары кафедрасы

Посилання

1. International Diabetes Federation. Diabetes Atlas 10th Edition. Brussels: IFD; 2021. 135 p.

2. Центр электронного здравоохранения при Министерстве Здравоохранения КР. Здоровье населения и деятельность организаций здравоохранения Кыргызской Республики. 2021 г. Режим доступа: https://cez.med.kg/здоровье-населения-и-деятельность-оз/

3. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [published correction appears in Circulation. 2022 May 3;145(18):e1033] [published correction appears in Circulation. 2022 Sep 27;146(13):e185] [published correction appears in Circulation. 2023 Apr 4;147(14):e674]. Circulation. 2022;145(18):e895-e1032. https://doi.org/10.1161/CIR.0000000000001063

4. World Health Organization. World Health Organization Model List of Essential Medicines: 22nd list, 2021. Geneva: World Health Organization. 2021 [cited 2021 Sept 30]. Available from: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02

5. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ. Res. 2021;128:1487-1513. https://doi.org/10.1161/ CIRCRESAHA.121.318241

6. Moghissi E, Inzucchi S. The evolution of glycemic control in the hospital setting. In: Draznin B, ed. Managing Diabetes and Hyperglycemia in the Hospital Setting. American Diabetes Association; 2016:1–10.

7. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459-2502. https://doi.org/10.1161/ CIRCULATIONAHA.116.022194

8. McDonagh T, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure [published correction appears in Eur Heart J. 2021 Oct 14]. Eur Heart J. 2021;42(36):3599-3726. https://doi.org/10.1093/eurheartj/ ehab368

9. Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation 2015;132(10):923–931. https://doi.org/10.1161/CIRCULATIONAHA.114.014796

10. Donihi AC. Practical recommendations for transitioning patients with type 2 diabetes from hospital to home. Curr Diab Rep 2017;17(7):52. https://doi.org/10.1007/s11892-017-0876-1

11. Goh LH, Siah CJR, Tam WWS, Tai ES, Young DYL. Effectiveness of the chronic care model for adults with type 2 diabetes in primary care: a systematic review and meta-analysis. Syst Rev. 2022;11:273. https://doi.org/10.1186/s13643-022-02117-w

12. Hoek AG, Dal Canto E, Wenker E, Bindraban N, Handoko ML, Elders PJM, et al. Epidemiology of heart failure in diabetes: a disease in disguise. Diabetologia. 2024;67(4):574-601. https://doi.org/10.1007/s00125-023-06068-2

13. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014;5(2):355-66. https://doi.org/10.1007/s13300-014-0089-4

14. Jahagirdar V, Barnett AH. Empagliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2014;15(16):2429-41. https://doi.org/10.1517/ 14656566.2014.966078

15. Htoo PT, Tesfaye H, Schneeweiss S, Wexler DJ, Everett BM, Glynn RJ, et al. Effectiveness and safety of empagliflozin: final results from the EMPRISE study. Diabetologia. Published online March 21, 2024. https://doi.org/10.1007/s00125-024-06126-3

16. Naing S, Poliyedath A, Khandelwal S, Sigala T. Impact of EMPA-REG OUTCOME® on the management of type 2 diabetes mellitus: a review for primary care physicians. Postgrad Med. 2016;128(8):822-827. https://doi.org/10.1080/ 00325481.2016.1245093

17. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-28. https://doi.org/10.1056/NEJMoa1504720

18. Арутюнов Г.П., Лопатин Ю.М., Аметов А.С., Агеев Ф.Т., Анциферов М.Б., Виллевальде С.В. и др. Эмпаглифлозин и сердечная недостаточность: согласованное мнение экспертов по результатам онлайн-совещания и обсуждения исследования EMPEROR-Preserved. Терапевтический архив. 2021;93(12):1491-1497.[Arutyunov GP, Lopatin YM, Ametov AS, Ageev FT, Antsiferov MB, Villevalde SV, et al. Empagliflozin and heart failure: position paper of the experts on the results of the online meeting and discussion of the EMPEROR-Preserved Trial. Ter Arkh. 2021;93(12):1491-1497. (In Russ.)]. https://doi.org/10.26442/ 00403660.2021.12.201281

19. Böhm M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Empagliflozin Improves Cardiovascular and Renal Outcomes in Heart Failure Irrespective of Systolic Blood Pressure. J Am Coll Cardiol. 2021;78(13):1337-1348. https://doi.org/10.1016/j.jacc.2021.07.049

20. Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). European Heart Journal. 2023;44(39):4043-4140. https://doi.org/10.1093/eurheartj/ehad192

21. Арутюнов Г.П., Лопатин Ю.М., Аметов А.С., Агеев Ф.Т., Анциферов М.Б., Виллевальде С.В. и др. Эмпаглифлозин и сердечная недостаточность: согласованное мнение экспертов по результатам онлайн-совещания и обсуждения исследования EMPEROR-Preserved. Терапевтический архив. 2021;93(12):1491-1497. [Arutyunov GP, Lopatin YM, Ametov AS, Ageev FT, Antsiferov MB, Villevalde SV, et al. Empagliflozin and heart failure: position paper of the experts on the results of the online meeting and discussion of the EMPEROR-Preserved Trial. Ter Arkh. 2021;93(12):1491-1497. (In Russ.)]. https://doi.org/10.26442/ 00403660.2021.12.201281

22. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 2019;140(21):1693-1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375

23. Kanie T, Mizuno A, Takaoka Y, Suzuki T, Yoneoka D, Nishikawa Y, et al. Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease: a network meta-analysis. Cochrane Database of Systematic Reviews. 2021;10:CD013650. https://doi.org/10.1002/14651858. CD013650.pub2

24. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022;24(1):4-131. https://doi.org/10.1002/ejhf.2333

25. Greene SJ, Butler J, Kosiborod MN. Chapter 3: Clinical Trials of Sodium-Glucose CoTransporter-2 Inhibitors for Treatment of Heart Failure. Am J Med. 2024;137(2S):S25-S34. https://doi.org/10.1016/j.amjmed.2023.04.019

26. Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic TranslSci. 2018;3(5):575-587. https://doi.org/10.1016/j.jacbts.2018.07.006

27. inman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.

28. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657.

29. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–357.

30. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

31. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–1424.

32. Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, et al. Evaluation of the effects of sodium‐glucose co‐transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR‐Preserved Trial. Eur J Heart Fail. 2019;21:1279–1287.

33. Abraham WT, Lindenfeld J, Ponikowski P, Agostoni P, Butler J, Desai AS, et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur Heart J. 2021;42:700–710.

34. Garcia-Ropero A, Santos-Gallego CG, Zafar MU, Badimon JJ. Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opin Drug Metab Toxicol. 2019;15(4):275-285. https://doi.org/10.1080/17425255.2019.1588886

35. Abdurrachim D, Manders E, Nicolay K, Mayoux E, Prompers JJ. Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice. Cardiovasc. Res. 2018;114:1843–1844.

36. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. J Am Coll Cardiol. 2019;73(15):1931-1944. https://doi.org/10.1016/j.jacc.2019.01.056

37. Wang X, Ni J, Guo R, Li L, Su J, He F, et al. SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail Rev. 2022;27(3):961-980. https://doi.org/10.1007/s10741-021-10096-8

38. Wojtasińska A, Kućmierz J, Tokarek J, Dybiec J, Rodzeń A, Młynarska E, et al. New Insights into Cardiovascular Diseases Treatment Based on Molecular Targets. Int J Mol Sci. 2023;24(23):16735. https://doi.org/10.3390/ijms242316735

39. Chase D, Eykyn TR, Shattock MJ, Chung YJ. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization. Cardiovasc Res. 2023;119(16):2672-2680. https://doi.org/10.1093/cvr/cvad157

40. Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20(1):57. https://doi.org/10.1186/s12933-021-01237-2

41. Su S, Ji X, Li T, Teng Y, Wang B, Han X, et al. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med. 2023;10:1291450. https://doi.org/10.3389/fcvm.2023.1291450

42. Thirunavukarasu S, Jex N, Chowdhary A, Hassan IU, Straw S, Craven TP, et al. Empagliflozin Treatment Is Associated With Improvements in Cardiac Energetics and Function and Reductions in Myocardial Cellular Volume in Patients With Type 2 Diabetes. Diabetes. 2021;70(12):2810-2822. https://doi.org/10.2337/db21-0270

43. Jhuo SJ, Lin YH, Liu IH, Lin TH, Wu BN, Lee KT, et al. Sodium Glucose Cotransporter 2 (SGLT2) Inhibitor Ameliorate Metabolic Disorder and Obesity Induced Cardiomyocyte Injury and Mitochondrial Remodeling. Int J Mol Sci. 2023;24(7):6842. https://doi.org/10.3390/ijms24076842

44. Choi J, Matoba N, Setoyama D, Watanabe D, Ohnishi Y, Yasui R, et al. The SGLT2 inhibitor empagliflozin improves cardiac energy status via mitochondrial ATP production in diabetic mice. Commun Biol. 2023;6(1):278. https://doi.org/10.1038/s42003-023-04663-y

45. Vargas-Delgado AP, Arteaga Herrera E, Tumbaco Mite C, Delgado Cedeno P, Van Loon MC, Badimon JJ. Renal and Cardiovascular Metabolic Impact Caused by Ketogenesis of the SGLT2 Inhibitors. Int J Mol Sci. 2023;24(4):4144. https://doi.org/10.3390/ijms24044144

46. Lyu Y, Huo J, Jiang W, Yang W, Wang S, Zhang S, et al. Empagliflozin ameliorates cardiac dysfunction in heart failure mice via regulating mitochondrial dynamics. Eur J Pharmacol. 2023;942:175531. https://doi.org/10.1016/j.ejphar.2023. 175531

47. Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023;20(7):443-462. https://doi.org/10.1038/s41569-022-00824-4

48. Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR, et al. Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin: The Randomized, Controlled EMPA-VISION Trial. Circulation. 2023;147(22):1654-1669. https://doi.org/10.1161/ CIRCULATIONAHA.122.062021

##submission.downloads##

Жарыяланганы

2024-06-13

Як цитувати

Молдобаева, М., і У. Омурзакова. «АДЕНОЗИНТРИФОСФАТТЫН ДАРАЖАСЫНА ЖАРАША ЖҮРӨК ЖЕТИШСИЗДИГИ МЕНЕН АЙКАЛЫШКАН 2-ТИПТЕГИ КАНТ ДИАБЕТИ МЕНЕН ООРУГАН БЕЙТАПТАРДЫ ДАРЫЛООНУН НАТЫЙЖАЛУУЛУГУНА ЭМПАГЛИФЛОЗИНДИН ТИЙГИЗГЕН ТААСИРИ (АДАБИЯТТАРГА СЕРЕП) ». Евразиялык саламаттыкты сактоо журналы, вип. 2, вип. 2, Червень 2024, с. 53-63, doi:10.54890/.v2i2.1330.