EFFECTIVENESS OF EMPAGLIFLOZIN IN TREATMENT OF PATIENTS WITH TYPE 2 DIABETES MELLITUS COMBINED WITH HEART FAILURE DEPENDING OF ATP LEVEL (LITERATURE REVIEW)
DOI:
https://doi.org/10.54890/.v2i2.1330Abstract
Along with the progressive increase number of patients with diabetes mellitus, the number of people with good glycemic control remains low, and therefore the risks of cardiovascular complications, including heart failure, are quite high. Among the new technologies to reduce glucose levels and risks of heart failure we studied a drug from the group of sodium-glucose cotransporter type 2 - empagliflozin, which focuses on new molecular targets: by improving the formation of adenosine triphosphate as a result of oxidation of ketone bodies, improving cardiac efficiency. In this article, we reviewed the existing science-based literature to analyze the effect of empagliflozin on treatment efficacy in patients with type 2 diabetes mellitus combined with heart failure, depending on ATP levels.
Keywords:
type 2 diabetes mellitus, heart failure, sodium-glucose co-transporter-2 inhibitors, empagliflozin, adenosine triphosphate.References
1. International Diabetes Federation. Diabetes Atlas 10th Edition. Brussels: IFD; 2021. 135 p.
2. Центр электронного здравоохранения при Министерстве Здравоохранения КР. Здоровье населения и деятельность организаций здравоохранения Кыргызской Республики. 2021 г. Режим доступа: https://cez.med.kg/здоровье-населения-и-деятельность-оз/
3. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [published correction appears in Circulation. 2022 May 3;145(18):e1033] [published correction appears in Circulation. 2022 Sep 27;146(13):e185] [published correction appears in Circulation. 2023 Apr 4;147(14):e674]. Circulation. 2022;145(18):e895-e1032. https://doi.org/10.1161/CIR.0000000000001063
4. World Health Organization. World Health Organization Model List of Essential Medicines: 22nd list, 2021. Geneva: World Health Organization. 2021 [cited 2021 Sept 30]. Available from: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02
5. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ. Res. 2021;128:1487-1513. https://doi.org/10.1161/ CIRCRESAHA.121.318241
6. Moghissi E, Inzucchi S. The evolution of glycemic control in the hospital setting. In: Draznin B, ed. Managing Diabetes and Hyperglycemia in the Hospital Setting. American Diabetes Association; 2016:1–10.
7. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459-2502. https://doi.org/10.1161/ CIRCULATIONAHA.116.022194
8. McDonagh T, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure [published correction appears in Eur Heart J. 2021 Oct 14]. Eur Heart J. 2021;42(36):3599-3726. https://doi.org/10.1093/eurheartj/ ehab368
9. Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation 2015;132(10):923–931. https://doi.org/10.1161/CIRCULATIONAHA.114.014796
10. Donihi AC. Practical recommendations for transitioning patients with type 2 diabetes from hospital to home. Curr Diab Rep 2017;17(7):52. https://doi.org/10.1007/s11892-017-0876-1
11. Goh LH, Siah CJR, Tam WWS, Tai ES, Young DYL. Effectiveness of the chronic care model for adults with type 2 diabetes in primary care: a systematic review and meta-analysis. Syst Rev. 2022;11:273. https://doi.org/10.1186/s13643-022-02117-w
12. Hoek AG, Dal Canto E, Wenker E, Bindraban N, Handoko ML, Elders PJM, et al. Epidemiology of heart failure in diabetes: a disease in disguise. Diabetologia. 2024;67(4):574-601. https://doi.org/10.1007/s00125-023-06068-2
13. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014;5(2):355-66. https://doi.org/10.1007/s13300-014-0089-4
14. Jahagirdar V, Barnett AH. Empagliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2014;15(16):2429-41. https://doi.org/10.1517/ 14656566.2014.966078
15. Htoo PT, Tesfaye H, Schneeweiss S, Wexler DJ, Everett BM, Glynn RJ, et al. Effectiveness and safety of empagliflozin: final results from the EMPRISE study. Diabetologia. Published online March 21, 2024. https://doi.org/10.1007/s00125-024-06126-3
16. Naing S, Poliyedath A, Khandelwal S, Sigala T. Impact of EMPA-REG OUTCOME® on the management of type 2 diabetes mellitus: a review for primary care physicians. Postgrad Med. 2016;128(8):822-827. https://doi.org/10.1080/ 00325481.2016.1245093
17. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-28. https://doi.org/10.1056/NEJMoa1504720
18. Арутюнов Г.П., Лопатин Ю.М., Аметов А.С., Агеев Ф.Т., Анциферов М.Б., Виллевальде С.В. и др. Эмпаглифлозин и сердечная недостаточность: согласованное мнение экспертов по результатам онлайн-совещания и обсуждения исследования EMPEROR-Preserved. Терапевтический архив. 2021;93(12):1491-1497.[Arutyunov GP, Lopatin YM, Ametov AS, Ageev FT, Antsiferov MB, Villevalde SV, et al. Empagliflozin and heart failure: position paper of the experts on the results of the online meeting and discussion of the EMPEROR-Preserved Trial. Ter Arkh. 2021;93(12):1491-1497. (In Russ.)]. https://doi.org/10.26442/ 00403660.2021.12.201281
19. Böhm M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Empagliflozin Improves Cardiovascular and Renal Outcomes in Heart Failure Irrespective of Systolic Blood Pressure. J Am Coll Cardiol. 2021;78(13):1337-1348. https://doi.org/10.1016/j.jacc.2021.07.049
20. Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). European Heart Journal. 2023;44(39):4043-4140. https://doi.org/10.1093/eurheartj/ehad192
21. Арутюнов Г.П., Лопатин Ю.М., Аметов А.С., Агеев Ф.Т., Анциферов М.Б., Виллевальде С.В. и др. Эмпаглифлозин и сердечная недостаточность: согласованное мнение экспертов по результатам онлайн-совещания и обсуждения исследования EMPEROR-Preserved. Терапевтический архив. 2021;93(12):1491-1497. [Arutyunov GP, Lopatin YM, Ametov AS, Ageev FT, Antsiferov MB, Villevalde SV, et al. Empagliflozin and heart failure: position paper of the experts on the results of the online meeting and discussion of the EMPEROR-Preserved Trial. Ter Arkh. 2021;93(12):1491-1497. (In Russ.)]. https://doi.org/10.26442/ 00403660.2021.12.201281
22. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 2019;140(21):1693-1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375
23. Kanie T, Mizuno A, Takaoka Y, Suzuki T, Yoneoka D, Nishikawa Y, et al. Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease: a network meta-analysis. Cochrane Database of Systematic Reviews. 2021;10:CD013650. https://doi.org/10.1002/14651858. CD013650.pub2
24. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022;24(1):4-131. https://doi.org/10.1002/ejhf.2333
25. Greene SJ, Butler J, Kosiborod MN. Chapter 3: Clinical Trials of Sodium-Glucose CoTransporter-2 Inhibitors for Treatment of Heart Failure. Am J Med. 2024;137(2S):S25-S34. https://doi.org/10.1016/j.amjmed.2023.04.019
26. Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic TranslSci. 2018;3(5):575-587. https://doi.org/10.1016/j.jacbts.2018.07.006
27. inman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128.
28. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657.
29. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–357.
30. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.
31. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–1424.
32. Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, et al. Evaluation of the effects of sodium‐glucose co‐transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR‐Preserved Trial. Eur J Heart Fail. 2019;21:1279–1287.
33. Abraham WT, Lindenfeld J, Ponikowski P, Agostoni P, Butler J, Desai AS, et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur Heart J. 2021;42:700–710.
34. Garcia-Ropero A, Santos-Gallego CG, Zafar MU, Badimon JJ. Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opin Drug Metab Toxicol. 2019;15(4):275-285. https://doi.org/10.1080/17425255.2019.1588886
35. Abdurrachim D, Manders E, Nicolay K, Mayoux E, Prompers JJ. Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice. Cardiovasc. Res. 2018;114:1843–1844.
36. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. J Am Coll Cardiol. 2019;73(15):1931-1944. https://doi.org/10.1016/j.jacc.2019.01.056
37. Wang X, Ni J, Guo R, Li L, Su J, He F, et al. SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail Rev. 2022;27(3):961-980. https://doi.org/10.1007/s10741-021-10096-8
38. Wojtasińska A, Kućmierz J, Tokarek J, Dybiec J, Rodzeń A, Młynarska E, et al. New Insights into Cardiovascular Diseases Treatment Based on Molecular Targets. Int J Mol Sci. 2023;24(23):16735. https://doi.org/10.3390/ijms242316735
39. Chase D, Eykyn TR, Shattock MJ, Chung YJ. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization. Cardiovasc Res. 2023;119(16):2672-2680. https://doi.org/10.1093/cvr/cvad157
40. Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20(1):57. https://doi.org/10.1186/s12933-021-01237-2
41. Su S, Ji X, Li T, Teng Y, Wang B, Han X, et al. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med. 2023;10:1291450. https://doi.org/10.3389/fcvm.2023.1291450
42. Thirunavukarasu S, Jex N, Chowdhary A, Hassan IU, Straw S, Craven TP, et al. Empagliflozin Treatment Is Associated With Improvements in Cardiac Energetics and Function and Reductions in Myocardial Cellular Volume in Patients With Type 2 Diabetes. Diabetes. 2021;70(12):2810-2822. https://doi.org/10.2337/db21-0270
43. Jhuo SJ, Lin YH, Liu IH, Lin TH, Wu BN, Lee KT, et al. Sodium Glucose Cotransporter 2 (SGLT2) Inhibitor Ameliorate Metabolic Disorder and Obesity Induced Cardiomyocyte Injury and Mitochondrial Remodeling. Int J Mol Sci. 2023;24(7):6842. https://doi.org/10.3390/ijms24076842
44. Choi J, Matoba N, Setoyama D, Watanabe D, Ohnishi Y, Yasui R, et al. The SGLT2 inhibitor empagliflozin improves cardiac energy status via mitochondrial ATP production in diabetic mice. Commun Biol. 2023;6(1):278. https://doi.org/10.1038/s42003-023-04663-y
45. Vargas-Delgado AP, Arteaga Herrera E, Tumbaco Mite C, Delgado Cedeno P, Van Loon MC, Badimon JJ. Renal and Cardiovascular Metabolic Impact Caused by Ketogenesis of the SGLT2 Inhibitors. Int J Mol Sci. 2023;24(4):4144. https://doi.org/10.3390/ijms24044144
46. Lyu Y, Huo J, Jiang W, Yang W, Wang S, Zhang S, et al. Empagliflozin ameliorates cardiac dysfunction in heart failure mice via regulating mitochondrial dynamics. Eur J Pharmacol. 2023;942:175531. https://doi.org/10.1016/j.ejphar.2023. 175531
47. Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023;20(7):443-462. https://doi.org/10.1038/s41569-022-00824-4
48. Hundertmark MJ, Adler A, Antoniades C, Coleman R, Griffin JL, Holman RR, et al. Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin: The Randomized, Controlled EMPA-VISION Trial. Circulation. 2023;147(22):1654-1669. https://doi.org/10.1161/ CIRCULATIONAHA.122.062021