THE ROLE OF ARTIFICIAL INTELLIGENCE IN MEDICINE: A SYSTEM ANALYSIS OF OPPORTUNITIES, CHALLENGES, AND PROSPECTS
DOI:
https://doi.org/10.54890/1694-8882-2025-3-31Abstract
Artificial Intelligence is rapidly transforming all aspects of life, and healthcare is no exception. The implementation of machine learning and deep neural network technologies offers revolutionary opportunities for increasing diagnostic accuracy, personalizing treatment, and optimizing managerial processes in medical institutions. Against this backdrop, a systematic analysis of artificial intelligence's capabilities, challenges, and prospects becomes critically important for formulating an effective national healthcare development strategy. The purpose of this review is to provide an analytical assessment of the role of artificial intelligence in modern medical practice and to define the main directions for its most effective and evidence-based implementation. The study was conducted as a targeted analytical literature review, followed by the thematic systematization of data obtained from international and national scientific sources. The article summarizes the current trends in the use of artificial intelligence across key areas of clinical medicine, including the automated interpretation of medical images (diagnostics), support for personalized treatment strategies, early detection and prediction of disease progression, robotic surgical assistance, and optimization of organizational and managerial processes in healthcare institutions. Particular attention is given to barriers preventing large-scale integration, such as the limited transparency of algorithmic reasoning, variability and representativeness of training datasets, and challenges of ensuring adherence to ethical, regulatory, and data protection standards. Conclusions. Based on the synthesis of sources, priority areas for the application and development of artificial intelligence withinthe healthcare system of the Kyrgyz Republic are identified, including the creation of sustainable digital infrastructures, professional training of specialists capable of safe and responsible use of artificial intelligence tools, and the formation of unified national standards.
Keywords:
artificial intelligence; machine learning; diagnostics; personalized medicine; ethics of artificial intelligence; patient; doctor; medicine; healthcare in KyrgyzstanReferences
1. Jiang F., Jiang Y., Zhi H., et al. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology. 2017;2(4):230-243. https://doi.org/ 10.1136/svn-2017-000101
2. Topol EJ. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York: Basic Books; 2019. 400 p.
3. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. https://doi.org/10.1016/j.media. 2017.07.005
4. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94. https://doi.org/ 10.1038/s41586-019-1799-6
5. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016 May 4;8(337):337ra64. https://doi.org/10.1126/scitranslmed.aad9398
6. Obermeyer Z, Emanuel EJ. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med. 2016;375(13):1216–1219. https://doi.org /10.1056/NEJMp1606181
7. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. https://doi.org /10.1038/nature21056
8. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1(1):18. https://doi.org/10.1038/s41746-018-0029-1
9. Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8(337):337ra64. https://doi.org/10.1126 /scitranslmed.aad9398
10. Hashimoto D.A., Rosman G., Rus D., Meireles O.R. Artificial Intelligence in Surgery: Promises and Perils. JAMA Surgery. 2022;157(3):201–208. https://doi.org/ 10.1001/jamasurg.2022.0035.
11. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2.
12. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019 Jun;6(2):94-98. https://doi.org/10.7861/futurehosp.6-2-94.
13. Amann J, Blasimme A, Vayena E, et al. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:310. https://doi.org/10.1186/s12911-020-01332-6
14. Miller T. Explanation in Artificial Intelligence: Insights from the Social Sciences // Artificial Intelligence. 2019;267:1–38. https://doi.org/10.1016/ j.artint. 2018.07.007
15. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science.2019;366(6464):447–453. https://doi.org/10.1126/science.aax2342
16. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical Machine Learning in Healthcare. Annu Rev Biomed Data Sci. 2021;4:123-144. https://doi.org/10.1146/annurev-biodatasci-092820-114757
17. Эмилов Б.Э., Намазов А.Б., Болотбекова А.Т., Салибаев О.А., Чубаков Т.Ч. Анализ мнений врачей на применение искусственного интеллекта в рентгенологии: результаты опроса в Кыргызской Республике. Вестник КГМА им. И.К. Ахунбаева. 2025;2:18-25 https://doi.org/10.54890/1694-8882-2025-2-18
18. Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43. https://doi.org/10.1038/s41591-018-0272-7
19. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94-98. https://doi.org/10.7861/futurehosp.6-2-94
20. Хайдарова Н.Б., Садыкова А.С., Алмеш Т.А., Шарипханова Г.Е. Искусственный интеллект в стоматологии: клинические исследования и перспективы применения на сегодняшний день. Евразийский журнал здравоохранения. 2025;2:252-256. https://doi.org/10.54890/1694-8882-2025-2-252

